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Abstract. Model checking is a formal and automatic technique used
to verify computational systems (e.g. communication protocols) against
given properties. The purpose of this chapter is to describe a model check-
ing algorithm to verify communication protocols used by autonomous
agents interacting using dialogue games, which are governed by a set
of logical rules. We use a variant of Extended Computation Tree Logic
CTL* for specifying these dialogue games and the properties to be checked.
This logic, called ACTL*, extends CTL* by allowing formulae to con-
strain actions as well as states. The verification method uses an on-the-fly
efficient algorithm. It is based on translating formulae into a variant of
alternating tree automata called Alternating Büchi Tableau Automata
(ABTA). We present a tableau-based version of this algorithm and pro-
vide the soundness, completeness, termination and complexity results.
Two case studies are discussed along with their respective implemen-
tations to illustrate the proposed approach. The first one is about an
agent-based negotiation protocol and the second one considers a modi-
fied version of the NetBill protocol.

1 Introduction

Model checking is a formal verification method widely used to check complex
systems involving concurrency and communication protocols by verifying some
desirable properties. Deadlock-freedom (it is false that two or more processes are
each waiting for another to release a resource), safety (some bad situation may
never occur), and reachability (some particular situation can be reached) are
examples of such properties. Model checking techniques offer the possibility of
obtaining an early integration of verification in the design process and reducing
the verification time. However, they are only applicable for finite state systems
and they generally operate on system models and not on the actual system.
In fact, the system is represented by a finite model M and the specification is
represented by a formula � using an appropriate logic. The verification method
consists of computing whether the model M satisfies � (i.e. M ∣= �) or not (i.e.
M ∕∣= �).

Recently, model checking Multi-Agent Systems (MASs) has seen an increas-
ing interest [3, 10, 11, 28, 29, 36, 39, 37, 45, 48]. However, although research in agent



communication has received much attention during the past years, only few re-
search works tried to address the verification of agent protocols [1, 2, 20, 24, 25,
47]. Several dialogue game protocols have been proposed for specifying agent
communication interactions [6, 31, 32, 41]. These games aim at offering more
flexibility by combining different small games to construct complete and more
complex protocols. Dialogue games can be thought of as interaction games in
which each agent plays a move in turn by performing utterances according to a
pre-defined set of rules.

The verification problem of agent communication protocols is fundamental
for the MASs community. Endriss et al. [20] have proposed abductive logic-based
agents and some means of determining whether or not these agents behave in
conformance with agent communication protocols. Baldoni et al. [2] have ad-
dressed the problem of verifying that a given protocol implementation using a
logical language conforms to its AUML specification. Alberti et al. [1] have con-
sidered the problem of verifying on the fly the compliance of the agents’ behavior
to protocols specified using a logic-based framework. These approaches are dif-
ferent from the technique presented in this chapter in the sense that they are not
based on model checking techniques and they do not address the problem of ver-
ifying if a protocol satisfies given properties. Giordano et al. [24] have addressed
the problem of specifying and verifying agent interaction protocols using a Dy-
namic Linear Time Temporal Logic (DLTL). The authors have addressed three
kinds of verification problems: 1) the compliance of a protocol execution to its
specification; 2) the satisfaction of a property in the protocol; 3) the compliance
of agents to the protocol. They have shown that these problems can be solved
by model checking DLTL. This model checking technique uses a tableau-based
algorithm for obtaining a Büchi automaton from a formula in DLTL and the
construction of this automaton uses proof rules. However, the protocols are only
specified in an abstract way in terms of the effects of communicative actions and
some precondition laws.

In this chapter, we describe a model checking-based verification of dialogue
game protocols for agent communication using an action and temporal logic
(ACTL*) based on the Extended Computation Tree Logic CTL*. Using a model
checking technique for this verification is motivated by the fact that model-
checking is a successful technique for automatically and computationally veri-
fying protocol specifications using a suitable logic. This technique can be used
to verify the protocol correctness in the sense that the protocol satisfies the ex-
pected properties. It allows us to verify agent communication properties specified
using ACTL* logic. Therefore, we can specify the protocol in a logical way and
verify its correctness in terms of the satisfaction of the expected properties. The
definition of a new logic is motivated by the fact that dialogue game protocols
should be specified using not only temporal properties, but also action properties.
In addition, in these protocols, actions that agents perform by communicating
are expressed in terms of “Social Commitments” (SCs) and arguments. These
protocols are specified as transition systems (TSs) using ACTL* logic and Com-



mitment and Argument Network (CAN) [7]. These TSs are labeled with actions
that agents perform on SCs and SC contents [18, 23, 42].

The model checking technique we describe in this chapter is based on the
translation of the formula expressing the property to be verified into a variant of
alternating tree automata called Alternating Büchi Tableau Automata (ABTA).
This technique is an extension of the ABTA-based algorithm for CTL* proposed
in [8]. The choice of this technique is motivated by the fact that unlike other
model checking techniques, this technique allows us to check temporal and ac-
tion formulas. In addition, this technique is one of the most efficient techniques
proposed in the literature. The translation procedure uses a set of inference rules
called tableau rules. Like automata-based model checking of Linear Temporal
Logic LTL, our technique is based on the product graph of the model and the
automaton representing the formula to be verified (Fig. 1). This technique allows
us to verify not only that the dialogue game protocol satisfies a given property,
but also that this protocol respects the decomposition rules of the communica-
tive acts. Consequently, if agents respect these protocols, then they also respect
the decomposition semantics of the communicative acts. Thus, we have only one
procedure to verify both:

1. the correctness of the protocols relative to the properties that the protocols
should satisfy;

2. the conformance of agents to the decomposition semantics of the commu-
nicative acts.
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Fig. 1. The model checking approach

The rest of this chapter is organized as follows. Section 2 presents an overview
of model checking MASs. Section 3 introduces tableau-based algorithms for
model checking, which we use in the verification procedure. Section 4 presents



the ACTL* logic: syntax, semantics and associated tableau rules. In Section 5,
we use this logic to define the TS that we use to specify dialogue game pro-
tocols. The problem of verifying these protocols is addressed in Section 6. The
ABTA’s definition that we use in our verification technique along with some run-
ning examples of the model checking steps are presented in this section. Section
7 presents two case studies and Section 8 concludes the chapter by discussing
open challenges in the area of verifying MASs and identifying some directions
for future work.

2 Brief Overview of Model Checking Multi-Agent
Systems

2.1 Extending and Adapting Existing Model Checkers

Bordini and his colleagues [10–12] have addressed the problem of verifying MASs
specified using the AgentSpeak(F) language (a simplified version of AgentS-
peak) against BDI specifications. They have shown how programs written in
AgentSpeak(F) can be automatically transformed into Promela and into Java
and how the BDI specifications are transformed into LTL formulae. The Spin
model checker3 based on Promela [27] and Java PathFinder 2 (JPF2) model
checker4 based on translating Java to Promela [26] are then used to verify the
MAS specifications. The idea behind using AgentSpeak(F) instead of the original
AgentSpeak is to make the system to be checked finite in terms of state space,
which is a fundamental condition of using model checking techniques. To this
end, the maximum sizes of types, data structures and communication channels
are specified. Examples of these maximum sizes are: MTerm: maximum number
of terms in a predicate or an action; MConj: maximum number of conjuncts
(literals) in a plans context; MV ar: maximum number of different variables in a
plan; MBel: maximum number of beliefs an agent can have at any moment in
time in its belief base; and MMsg: maximum number of messages (generated by
inter-agent communication) that an agent can handle at a time.

The main constructs in a Promela program are Promela channels and in
order to translate AgentSpeak(F) into Promela, the following channels are used
to capture the data structures used in an AgentSpeak(F) program: (1) channel b
for the agent’s belief base withMBel messages as maximum size and each message
has MTerms + 1 as maximum size; (2) channel p for the environment’s percepts
where the maximum size is the same as for channel b; (3) channel m for sending
agent communication messages where the bound isMMsg messages; (4) channel e
for events, which are related to intentions; (5) channel i for scheduling intentions;
and channel a for storing actions. Promela inline procedures are used to code the

3 The Spin model checker can be downloaded from:
http://spinroot.com/spin/Man/README.html

4 The JPF2 model checker is open source and can be downloaded from:
http://javapathfinder.sourceforge.net/



bodies of agents’ plans. The environment is implemented as a Promela process
type defined by the user.

Channel m is used to handle messages when the agent interpretation cycle
starts, and channels p and b are used by the agent to run its belief revision.
Events are handled according to FIFO policy: when new events are generated,
they are inserted in the end of channel e, and the first message in that channel
is selected as the event to be handled in the current cycle. Translating a formula
that appears in a plan body is done as follows: basic actions are appended to
channel a; addition and deletion of beliefs is translated as adding or removing
messages to/from channel b; and test goals are simply an attempt to match the
associated predicate with any message from channel b.

To check BDI properties, BDI modalities are interpreted in terms of Promela
data structures associated to an agentSpeak(F) agent. For instance, an AgentS-
peak(F) agent believes a formula � iff it is included in the agent’s belief base, and
this agent intends � iff it has � as an achievement goal that currently appears in
its set of intentions, or � is an achievement goal that appears in the (suspended)
intentions associated with the set of events.

In the same line of research, Rao and Georgeff [39] have proposed an adapta-
tion of CTL and CTL* model checking to verify BDI (beliefs, desires and inten-
tions) logics. Furthermore, van der Hoek and Wooldridge [45] have reduced the
problem of model checking knowledge for multi-agent systems to linear temporal
logic model checking using the logic of local propositions [21]. The Spin model
checker is then used to check temporal epistemic properties. In [48], Wooldridge
et al. have presented the translation of the MABLE language for the specifi-
cation and verification of MASs into Promela. MABLE is an imperative and
agent-oriented programming language where agents have mental states consist-
ing of beliefs, desires and intentions and communicate using request and inform
performatives. The inputs of the MABLE compiler are the MABLE system and
associated claims expressed in ℳOℛA, a BDI logic. As output, MABLE gen-
erates a description of the MABLE system in Promela and a translation of the
claims into LTL. In another work, Huget and Wooldridge [25] have used a varia-
tion of the MABLE language to define a semantics of agent communication and
have shown that the compliance to this semantics can be reduced to a model
checking problem. In [47], Walton has applied model checking techniques in or-
der to verify the correctness of agent protocol communication using the SPIN
model checker. Benerecetti and Cimatti [3] have proposed a general approach for
model-checking MASs together with modalities for BDI attitudes by extending
symbolic model checking and using NuSMV5 [13], a model checker for computa-
tion tree logic CTL. In [30], Lomuscio et al. have introduced a methodology for
model checking multi-dimensional temporal-epistemic logic CTLK by extending
NuSMV. The methodology is based on reducing the model checking of CTLK to
the problem of model checking ARCTL, an extension of CTL with action labels
and operators to reason about actions [35].

5 The NuSMV2 model checker is open source and can be downloaded from:
http://nusmv.fbk.eu/NuSMV/download/getting-v2.html



2.2 Developing New Algorithms and Tools

To model MASs, the authors in [37, 38] use the formalism of interpreted sys-
tems [22]. This formalism is defined as follows. Assume a set of agents Ag =
{1, ..., n}, where each agent i is characterized by a finite set of local states Li
and possible actions Acti together with a protocol Pi : Li → 2Acti. The set
S = L1 × . . . × Ln × LE represents global states for the system where LE is
the set of local states associated to the environment. Agents’ local states evolve
in time according to the evolution function ti : Li × LE × Act → Li, where
Act = Act1 × . . . × Actn. Given a set of initial global states I ⊆ S, the set of
reachable states Rs ⊆ S is generated by the possible runs of the system using the
evolution function and the protocol. An interpretation system is then a tuple:
IS = ⟨(Li, Acti, Pi, ti)i∈Ag, I, V ⟩, where V : S → 2AP is the evaluation function
over the set of atomic propositions AP . The MAS is analyzed using a logic com-
bining epistemic logic S5n with CTL logic. The syntax is as follows:
' ::= p ∣ ¬' ∣ ' ∨ ' ∣ EX' ∣ EG' ∣ E['U'] ∣ Ki'.
Ki' means i knows '. The meanings of the other operators are as in CTL, where
E is the existential path quantifier, X is the next operator, G is the globally
operator and U is the until operator.

To evaluate the formulae, a Kripke model MIS = (Rs, I, Rt,∼1, . . . ,∼n, V )
is associated with a given interpreted system IS. The temporal relation Rt ⊆
Rs×Rs is obtained using the protocols Pi and the evolutions functions ti, and
the epistemic relations ∼1, . . . ,∼n are defined by checking the equality of the i-
th local component of two global states (i.e., (l1, . . . , ln) ∼i (l′1, . . . , l

′
n) iff li = l′i).

The semantics is defined in MIS in the standard way.

To check the desired properties, the authors use symbolic model checking
based on ordered binary decision diagrams (OBDDS). The model and formula
to be checked are not represented as automata, but symbolically using boolean
functions. This makes the technique efficient to deal with large systems. NuSMV
[13] is the most popular symbolic model checker based on OBDDS. The MCMAS
model checker6 proposed in [38] is an extension of NuSMV for the epistemic
properties. The idea is to represent the elements of the interpreted system MIS

by means of boolean formulas and then develop a propositional satisfiability
solver (SAT) based on this representation for the verification of the properties
associated with the interpreted system.

Agents’ local states and actions are encoded as boolean vectors, which are
identified by boolean formulae. Protocols and evolutions functions associated
with local states and actions are also represented via boolean formulae. The
SAT algorithm is an extension of CTL SAT solver for the knowledge operator
Ki' whose semantics is defined using the accessibility relation ∼i. Let Ri be the
boolean function representing ∼i, the SAT component of this operator is defined
as follows:

6 The MCMAS model checker can be downloaded from:
http://www-lai.doc.ic.ac.uk/mcmas/download.html



SATK(', i){
X = SAT (¬')
Y = {s∣Ri(s) ∩X = ∅}
return Y ∩Rs
}

The idea of the algorithm is to compute the set of global states X in which
the negation of ' holds. Then, the set Y of states of which the ∼i accessible
states are not in X is computed. This means that these states satisfy the seman-
tics of Ki'. Among these states, the algorithm returns those are reachable (i.e.
those in Rs).

MCMAS model checker takes as input an interpreted system, which is parsed
using Lex and Yacc parser. OBDDs are then built for the input parameters. The
formula to be checked is then parsed and the SAT algorithm is executed to
compute the set of states in which the formula holds, which is then compared
with the set of reachable states. The tool is developed in C++.

In the same research direction, Penczek and Lomuscio [36] have developed
a bounded model checking algorithm for branching time logic for knowledge
(CTLK). In a similar way, Kacprzak et al. [29] have investigated the problem
of verifying epistemic properties using CTLK by means of an unbounded model
checking algorithm. Kacprzak and Penczek [28] have addressed the problem of
verifying game-like structures by means of unbounded model checking. Recently,
Cohen et al. [16] have introduced a new abstraction-based model checking tech-
nique for MASs aiming at saving representation space and verification time. The
MAS is defined in the interpreted systems framework and the abstraction is per-
formed by simplifying and collapsing the local states, local protocol and local
evolution function of each agent in the system. Thus, the set Li of local states
of agent i is partitioned into equivalence classes called abstract local states of
agent i. Similarly, the set ACTi of possible actions of agent i is partitioned into
equivalence classes called abstract actions of agent i. Local protocols and local
evolution functions are abstracted by uniformly replacing any local state with
its equivalence class and replacing any action with its equivalence class. The
authors have shown that the resulting abstract system simulates the concrete
system so that if a temporal-epistemic specification holds on the abstract system,
the specification also holds on the concrete one.

3 Tableau-based Model Checking Dialogue Games

Unlike traditional proof systems which are bottom-up approaches, tableau-based
algorithms used for model checking work in a top-down or goal-oriented fashion
[14]. In the tableau-based approach, tableau rules are used in order to prove a
certain formula by inferring when a state in a Kripke structure satisfies such a
formula. According to this approach, we start from a goal (a formula), and we
apply a tableau rule and determine the sub-goals (sub-formulae) to be proven.
The tableau rules are designed so that the goal is true if all the sub-goals are
true. The advantage of this method is that the state space to be checked is



explored in a need-driven fashion [8]. The model checking algorithm searches
only the part of the state space that needs to be explored to prove or disprove
a certain formula. The state space is constructed while the algorithm runs. This
kind of model checking algorithms is referred to as on-the-fly or local algorithms
[8, 9, 14, 44].

The tableau decision algorithm that we use in our verification technique
provides a systematic search for a model which satisfies a particular formula
expressed using ACTL* logic. It is a graph construction algorithm. Nodes of the
graph are sets of ACTL* formulae and tableau rule names. The interpretation
of vertex labeling is that for the vertex to be satisfied, it must be possible to
satisfy all the formulae in the set together. Each edge in the graph represents a
satisfaction step of the formula contained in the starting vertex. These steps cor-
respond to the application of a set of tableau rules. These rules express how the
satisfaction of a particular formula (the goal) can be obtained by the satisfaction
of its constituent formulae (sub-goals).

4 ACTL* Logic

4.1 Syntax

In this section, we present ACTL* logic that we use to specify dialogue game
protocols and express the properties to be verified (See Fig. 1). This specifica-
tion will be addressed in Section 5. ACTL* is a simplification of our logic for
agent communication [7]. ACTL* extends CTL* by allowing formulae to con-
strain actions as well as propositions. The difference between ACTL* and CTL*
is that the former contains action formulae and two new operators: SC for social
commitments and ∴ for arguments. The set of atomic propositions is denoted
�p. The set of action labels is denoted �a. In what follows we use p, p1, p2, . . .
to range over the set of atomic propositions and �, �1, �2, . . . to range over action
labels. The syntax of this logic is as follows:

S ::= p ∣ ¬S ∣ S ∧ S ∣ S ∨ S ∣ AP ∣ EP ∣ SC(Ag1, Ag2,P)

P ::= � ∣ ¬P ∣ S ∣ P ∧ P ∣ P ∨ P ∣ XP ∣ PUP ∣ P ∴ P
∣ ACT1(Ag1, SC(Ag1, Ag2,P)) ∣ ACT2(Ag2, SC(Ag1, Ag2,P))
∣ ACT+

1 (Ag1, SC(Ag1, Ag2,P),P) ∣ ACT+

2 (Ag2, SC(Ag1, Ag2,P),P)

ACT1 ::= Cr ∣ Wit ∣ Sat ∣ V io

ACT2 ::= Ac ∣ Ref ∣ Cℎ

ACT+

1 ::= Def ∣ Jus

ACT+

2 ::= At



The formulae generated by S are called state formulae, while those generated
by P are called path formulae. We use  ,  1,  2, . . . to range over state formulae
and �, �1, �2, . . . to range over path formulae. The formula A� (respectively E�)
means in all paths (resp. some paths) starting from the current state � is satis-
fied. The formula SC(Ag1, Ag2, �) means that agent Ag1 commits towards agent
Ag2 that the path formula � is true. Committing to path formulae is more expres-
sive than committing to state formulae since state formulae are path formulae.
In fact, by committing to path formulae, agents can commit to state formu-
lae and express commitments toward the future, for example committing that
X� (� holds from the next state), �1U�2 (�1 holds until �2 becomes true) and
EF� (there is a path such that in its future � holds)7. Ag1 and Ag2 are respec-
tively called the debtor and creditor of the commitment. The formula �1 ∴ �2
means that �1 is an argument for �2. We can read this formula: �1, so �2. This
operator introduces argumentation as a logical relation between path formu-
lae. Action(Ag, SC(Ag1, Ag2, �)) and Action+(Ag, SC(Ag1, Ag2, �), �1), where
Action corresponds to ACT1 and ACT2 and Action+ corresponds to ACT+

1

and ACT+
2 , indicate the action an agent Ag (Ag ∈ {Ag1, Ag2}) performs on

SC(Ag1, Ag2, �). The actions we consider are: Cr (create),Wit (withdraw), Sat
(satisfy), V io (violate), Ac (accept), Ref (refuse), Cℎ (challenge), At (attack),
Def (defend) and Jus (justify).

4.2 Semantics

Semantically, this logic is interpreted with respect to the model M defined as

follows: M = ⟨Sm, Lab, Actm,
Actm−→ , Agt, Rsc, sm0

⟩ where: Sm is a set of states;

Lab : Sm → 2�p is the labeling state function; Actm is a set of actions;
Actm−→⊆

Sm×Actm×Sm is the transition relation; Agt is a set of communicating agents;
Rsc : Sm×Agt×Agt→ 2� with � is the set of all paths in M is an accessibility
modal relation that associates to a state sm the set of paths along which an agent
can commit towards another agent; sm0

is the start state. The paths that path

formulae are interpreted over have the form x = sm0

�1−→ sm1

�2−→ sm2
. . . where

x ∈ �, sm0
, sm1

, . . . are states and �1, �2, . . . are actions. xi = smi

�i+1

−→ smi+1
. . .

is the suffix of the path x starting from the itℎ state. The set of paths starting
from a state sm is denoted �m. x[i] is the itℎ state in the path x. In the rest, ⇒
stands for implies.
sm ∣=M p iff p ∈ Lab(sm)
sm ∣=M ¬ iff not(sm ∣=M  )
sm ∣=M  1 ∧  2 iff sm ∣=M  1 and sm ∣=M  2

sm ∣=M  1 ∨  2 iff sm ∣=M  1 or sm ∣=M  2

A state sm satisfies A� (E�) if every path (some path) emanating from this
state satisfies �. Formally:
sm ∣=M A� iff ∀x ∈ �m x ∣=M �

7 Operator F (in the future) is an abbreviation defined from operator U : F� ≡ trueU�



sm ∣=M E� iff ∃x ∈ �m x ∣=M �

A state sm satisfies SC(Ag1, Ag2, �) if every accessible path to Ag1 towards
Ag2 from this state using Rsc satisfies �. Formally:
sm ∣=M SC(Ag1, Ag2, �) iff ∀x ∈ Rsc(sm, Ag1, Ag2) x ∣=M �.

A path satisfies a state formula if the initial state in the path does. Formally:
x ∣=M  iff sm0

∣=M  

To define the satisfiability of action labels over paths, we introduce the no-
tation �⊵ �i where i ≥ 1 to indicate that the action label � becomes true when
performing the action �i, that is �i brings about � (for example, by performing
the action of opening the door the action label “door is open” becomes true. If
not, we write � ⋭ �i. A path x satisfies an action label � if � is in the label of
the first transition on this path and this path is not a deadlocked path. A path
is deadlocked if it has no transitions. A path satisfies ¬� if either � is not in
the label of the first transition on this path or this path is a deadlocked path.
Formally:
x ∣=M � iff � ⊵ �1 and x is not a deadlocked patℎ
x ∣=M ¬� iff � ⋭ �1 or x is a deadlocked patℎ
where the action �1 is the label of the first transition on the path x.
x ∣=M ¬� iff not(x ∣=M �)
x ∣=M �1 ∧ �2 iff x ∣=M �1 and x ∣=M �2
x ∣=M �1 ∨ �2 iff x ∣=M �1 or x ∣=M �2

X represents the next time operator and has the usual semantics when the
path is not deadlocked. On a deadlocked path, X� holds if the current state
satisfies �. Formally:
x ∣=M X� iff (x is not a deadlocked patℎ⇒ x1 ∣=M �) and

(x is a deadlocked patℎ⇒ x[0] ∣=M �)

In the rest, the path x is supposed non-deadlocked. Along this path, �1U�2
holds if �1 remains true along this path until �2 becomes true (strong until).
Formally:
x ∣=M �1U�2 iff ∃i ≥ 0 : xi ∣=M �2 and ∀j < i, xj ∣=M �1

Along a path x, �1 ∴ �2 holds if �1 is true and at next time if �1 is true then
�2 is true. Formally:
x ∣=M �1 ∴ �2 iff x ∣=M �1 and x1 ∣=M �1 ⇒ �2
Because the semantics of ∴ operator is defined using existing operators, it is in-
troduced here as a useful abbreviation, which will be used to define the semantics
of some actions performed on SCs.

To specify dialogue game protocols in this logic according to the CAN frame-
work, we use a set of actions performed by the communicating agents on SCs and
SC contents. The idea behind the CAN framework is that agents communicate



by performing actions on SCs (for example creating, accepting and challenging
SCs) and by supporting these actions by argumentation relations (attack, de-
fense, and justification). Such an approach, called the social approach [34] is
considered as an alternative to the private approach based on the agents’ men-
tal states like beliefs, desires, and intentions [17]. The semantics of the action
formulae is defined as follows:
x ∣=M Cr(Ag1, SC(Ag1, Ag2, �)) iff �1 = Cr and sm1

∣=M SC(Ag1, Ag2, �)
x ∣=M Wit(Ag1, SC(Ag1, Ag2, �)) iff �1 =Wit and sm1

∣=M ¬SC(Ag1, Ag2, �)
x ∣=M Sat(Ag1, SC(Ag1, Ag2, �)) iff �1 = Sat and sm1

∣=M �
x ∣=M V io(Ag1, SC(Ag1, Ag2, �)) iff �1 = V io and sm1

∣=M ¬�
x ∣=M Ac(Ag2, SC(Ag1, Ag2, �)) iff �1 = Ac and sm1

∣=M SC(Ag2, Ag1, �)
x ∣=M Ref(Ag2, SC(Ag1, Ag2, �)) iff �1 = Ref and sm1

∣=M SC(Ag2, Ag1,¬�)
x ∣=M Cℎ(Ag2, SC(Ag1, Ag2, �)) iff �1 = Cℎ and sm1

∣=M SC(Ag2, Ag1, ?�)
x ∣=M At(Ag2, SC(Ag1, Ag2, �1), �2) iff �1=At and sm1

∣=MSC(Ag2, Ag1, �2∴¬�1)
x ∣=MDef(Ag1, SC(Ag1, Ag2, �1), �2) iff �1=Def and sm1

∣=MSC(Ag1, Ag2, �2∴ �1)
x ∣=MJus(Ag1, SC(Ag1, Ag2, �1), �2) iff �1=Jus and sm1

∣=MSC(Ag1, Ag2, �2∴ �1)

Cr(Ag1, SC(Ag1, Ag2, �)) is satisfied along the path x iff the first transition
is labeled by Cr and the underlying commitment holds in the next state on
that path. The semantics of the other formulae is defined in the same way. The
commitment is withdrawn iff after performing the action, the commitment does
not hold in the next state. It is satisfied (resp. violated) iff after the action, the
content becomes true (resp. false) in the next state. When Ag2 accepts (resp. re-
fuses) the commitment content, it becomes committed to the same content (resp.
the negation of the same content) in the next state. For simplification reasons,
the semantics of challenge is defined by introducing a syntactical construct “?” to
indicate that the debtor Ag2 of the resulting commitment SC(Ag2, Ag1, ?�) does
not have an argument supporting � or ¬�. For the purpose of model checking
dialogue games, this syntactical construct is useful for the tableau-based verifica-
tion technique we will present in Section 6. The content �1 of Ag1’s commitment
is attacked by Ag2 using �2 iff after performing the attack action, Ag2’s com-
mitment about �2 ∴ ¬�1 holds in the next state. Ag1 defends its commitment
(against an attack) and justifies it (against a challenge) iff after performing the
action, the Ag1’s commitment about �2 ∴ �1 holds in the next state.

ACTL* logic is the fusion of CTL* logic and a logic for commitments. The
logic for commitments has the following properties, where → is the classical
implication:

1. Rsc is serial (axiom D);

2. Rsc is reflexive (axiom M) because accessible paths start from the current
state where the commitment has been made and a formula is satisfied along
a path if it is satisfied in the initial state of this path, which means on an
accessible path we have SC(Ag1, Ag2, �) → �

3. Rsc is transitive (axiom 4): SC(Ag1, Ag2, �)→SC(Ag1, Ag2, SC(Ag1, Ag2, �)).

This makes the logic an S4 system.



4.3 Tableau Rules

In this section, we present the tableau rules that we use to translate the ACTL*
property to be verified to an ABTA (see Fig. 1). The definition of ABTA and the
translation procedure will be presented in Sections 6.1 and 6.2. The tableau rules
allow us to build the ABTA representing the formula to be verified. These rules
[14] are specified in terms of the decomposition of formulae to sub-formulae. They
enable us to define top-down proof systems. The idea is: given a formula (the top
part of the rule), we apply a tableau rule and determine the sub-formulae (the
down part of the rule) to be proven (see Section 3). Tableau rules are inference
rules used in order to prove a formula by proving all the sub-formulae. The labels
of these rules are the labels of states in the ABTA constructed from the given
formula (Section 6.1). These rules are presented in Table 1. In these rules, � is
any set of path formulae. The symbol “, ” indicates a conjunction. For example,
E(�,  ) means that, there is a path along which the set of path formulae � and
the state formula  are true. Adding the set � to these rules allows us to deal
with any form of formulae written under the form of any set of path formulae
and a formula of our logic. We also recall that we use  ,  1,  2, . . . to range over
state formulae and �, �1, �2, . . . to range over path formulae.

Table 1. Tableau rules

R1 ∧ :  1∧ 2

 1 2
R2 ∨ :  1∨ 2

 1
,  1∨ 2

 2
R3 ∨ : E( )

 
R4 ¬ : ¬ 

 
R5 ¬ : A(�)

E(¬�)

R6 <Cr> : E(�,Cr(Ag1,SC(Ag1,Ag2,�)))
E(�,SC(Ag1,Ag2,�))

R11 < Ac > : E(�,Ac(Ag2,SC(Ag1,Ag2,�)))
E(�,SC(Ag2,Ag1,�))

R7 <Wit> : E(�,Wit(Ag1,SC(Ag1,Ag2,�)))
E(�,¬SC(Ag1,Ag2,�))

R12 < Ref > : E(�,Ref(Ag2,SC(Ag1,Ag2,�)))
E(�,SC(Ag2,Ag1,¬�))

R8 <Sat> : E(�,Sat(Ag1,SC(Ag1,Ag2,�)))
E(�,�)

R13 <Jus> : E(�,Jus(Ag1,SC(Ag1,Ag2,�1),�2))
E(�,SC(Ag1,Ag2,�2∴�1))

R9 <V io> : E(�,V io(Ag1,SC(Ag1,Ag2,�)))
E(�,¬�)

R14 <At> : E(�,At(Ag2,SC(Ag1,Ag2,�1),�2))
E(�,SC(Ag2,Ag1,�2∴¬�1))

R10 <Cℎ> : E(�,Cℎ(Ag2,SC(Ag1,Ag2,�)))
E(�,SC(Ag2,Ag1,?�))

R15 <Def > : E(�,Def(Ag1,SC(Ag1,Ag2,�1),�2))
E(�,SC(Ag1,Ag2,�2∴�1))

R16 [SCAg1 ] :
E(�,SC(Ag1,Ag2,�))

E(�,�)
R17 <≡> : E(�,	)

E(�)E(	)
R18 ∧ : E(�,�1∧�2)

E(�,�1,�2)

R19 ∨ : E(�,�1∨�2)
E(�,�1)E(�,�2)

R20 X : E(�,X�1,...,X�n)
E(�,�1,...,�n)

R21 ∧ : E(�,�1∴�2)
E(�,�1,X(¬�1∨�2))

R22 ∨ : E(�,�1U�2)
E(�,�2)E(�,�1,X(�1U�2))

Rule R1 labeled by “∧” indicates that  1 and  2 are the two sub-formulae of
 1 ∧ 2. This means that, in order to prove that a state labeled by “∧” satisfies
the formula  1 ∧ 2, we have to prove that the two children of this state satisfy



 1 and  2 respectively. According to rule R2, in order to prove that a state
labeled by “∨” satisfies the formula  1 ∨  2, we have to prove that one of the
two children of this state satisfies  1 or  2. R3 labeled by “∨” indicates that  
is the sub-formula to be proved in order to prove that a state satisfies E( ). E
is the existential path-quantifier. According to R4, the formula ¬ is satisfied in
a state labeled by “¬” if this state has a successor representing the sub-formula
 , which is not satisfied. R5 is defined in the usual way.

The label “<Cr>” (R6) is the label associated with the creation action of a
social commitment. According to this rule, in order to prove that a state labeled
by “<Cr>” satisfies Cr(Ag1, SC(Ag1, Ag2, �)), we have to prove that the child
state satisfies the sub-formula SC(Ag1, Ag2, �). The idea is that by creating a
social commitment, this commitment becomes true in the child state. In the
model representing the dialogue game protocol, the idea behind the creation
action is that by creating a social commitment, this commitment becomes true
in the accessible state via the transition labeled by the creation action. The label
“<Wit >” (R7) is the label associated with the withdrawal action of a social
commitment. According to this rule, in order to prove that a state labeled by
“<Wit>” satisfies Wit(Ag1, SC(Ag1, Ag2, �)), we have to prove that the child
state satisfies the sub-formula ¬SC(Ag1, Ag2, �). Rules R8 to R15 are defined
in the same way. For example, the idea of rule R11 is that by accepting a social
commitment whose content is � by an agent Ag2, this agent commits about this
content in the child state. In this state, the commitment of Ag2 becomes true. In
rule R10, we use the syntactical construct “?” introduced in Section 4.2 meaning
that the debtor Ag2 does not have an argument supporting � or ¬�. The idea of
this rule is that by challenging a social commitment, Ag2 commits in the child
state that it does not have an argument for or against the content �. Because
“?” is only a syntactical construct, ?� does not have a sub-formula, so there is
no rule for “?”.

Rule R16 indicates that E(�) is the sub-formula of E(SC(Ag1, Ag2, �)).
Thus, in order to prove that a state labeled by “[SCAg1 ]” satisfies the for-
mula E(SC(Ag1, Ag2, �)), we have to prove that the child state satisfies the
sub-formula E(�). According to the semantics of social commitments (Section
4), the idea of this rule is that if an agent commits about a content along a path,
this content is true along this path (we recall that the commitment content is a
path formula).

Rules R17, R18, and R19 are straightforward. According to rule R20 and
in accordance with the semantics of “X”, in order to prove that a state labeled
with “X” satisfies E(X�), we have to prove that the child state satisfies the sub-
formula E(�). According to R21 and in accordance with the semantics of “∴”
(Section 4), in order to prove that a state labeled with “∧” satisfies E(�1 ∴ �2),
we have to prove that the child state satisfies the sub-formula E(�1 ∧X(¬�1 ∨
�2)). This mean that the support is true and next if the support is true then
the conclusion is true. Finally, rule R22 is defined in accordance with the usual
semantics of until operator “U”.



5 Dialogue Game Protocols as Transition Systems

In Section 4, we presented ACTL* logic and CAN-based actions. In this section,
we specify the dialogue game protocols to be checked as models for this logic
(see Fig. 1). This specification uses CAN-based actions and the labels of the
tableau rules that we will present in Section 4.3. Dialogue game protocols are
specified as a set of rules describing the entry condition, the dynamics and the
exit condition [6]. These rules can be specified as CAN-based actions.

Dialogue game protocols are defined as TSs. The purpose of these TSs is to
describe not only the sequence of the allowed actions (classical TSs), but also
the tableau rules-based decomposition of these actions (Section 4.3). The states
of these systems are sub-TSs (that we call decomposition TSs) describing the
tableau rules-based decomposition of the actions labeling the entry transitions.
Defining TSs in such a way allows us to verify: (1) The correctness of the proto-
col (if the model of the protocol satisfies the properties that the protocol should
specify); (2) The compliance to the decomposition semantics of the commu-
nicative actions (if the specification of the protocol respects the decomposition
semantics). In Section 6, we present a model checking procedure in order to
verify both (1) and (2) at the same time. The definition of the TSs of dialogue
game protocols is given by the following definitions:

Definition 1 (Decomposition TSs). A decomposition transition system (DT )
describing the tableau-rules-based decomposition semantics of a CAN based-action

formula is a 7-tuple ⟨S′, Lab′, F, L′, R,
R

−→, s′0⟩ where: S
′ is a set of states; Lab′ :

S′ → 2�p is the labeling state function; F is a set of ACTL* formulae; L′ :
S′ → 2F is a function associating a set of formulae to a state; R ∈ {∧,∨,¬, <
≡>,X, SCAg} is a tableau rule label (without the rules for CAN-based action

formulae) (see Section 4.3);
R
−→⊆ S′ × R × S′ is the transition relation; s′0 is

the start state.

Intuitively, states S′ contain the sub-formulae of the CAN-based action for-
mulae, and the transitions are labeled by operators associated with the formula
of the starting state. Decomposition TSs enable us to describe the decomposi-
tion semantics of formulae by sub-formulae connected by logical operators. Thus,
there is a transition between states S′

i and S
′
j iff L

′(S′
j) is a sub-formula of L′(S′

i).

Definition 2 (TSs for Dialogue Game Protocols). A transition system

T for a dialogue game protocol is a 7-tuple ⟨S,Lab, ℘, L,Act,
Act
−→, s0⟩ where: S

is a set of states; Lab : S → 2�p is the labeling state function; ℘ is a set of
decomposition TSs with " ∈ ℘ is the empty decomposition TS; L : S → ℘ is the
function associating to a state s ∈ S a decomposition transition system DT ∈ ℘
describing the tableau-based decomposition of the CAN-based action labeling the

entry transition; Act is the set of CAN-based actions;
Act
−→⊆ S × Act× S is the

transition relation; s0 is the start state with L(s0) = ".

We write s
∙

−→ s′ instead of <s, ∙, s′>∈
Act
−→ where ∙ ∈ Act. Fig. 2 illustrates

a part of a TS for a dialogue game protocol. According to this protocol, if Ag1



plays a creation game (a1), Ag2 can, for instance, play a challenge game (a2).
Thereafter, Ag1 must plays a justification game (a3), etc.

Fig. 2. A part of a transition system for a dialogue game protocol

States S1, S2, and S3 are decomposition TS associated respectively with
creation, challenge, and justification actions. For example, for the creation action
(S1), the first state (s1.0) is associated with the SC formula according to the
rule R6 (Table 1, Section 4.3). The next state is associated with the SC content
according to the rule R16 (Table 1). The transition is labeled with the label of
this rule. An example of the properties to be verified in this protocol is:

AG(Cℎ(Ag2, SC(Ag1, Ag2, �1)) ⇒ F (Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (1)

This property says that in all paths (A) globally (G)8, if an agent Ag2 challenges
(Cℎ) the content of a SC made by an agent Ag1, then in the future (F ), Ag1
justifies (Jus) the content of its SC. In the rest of this chapter, we refer to this
formula as Formula 1.

6 Verification of Dialogue Game Protocols

In previous sections, we presented the elements needed for the verification of
dialogue game protocols: the logic along with the associated tableau rules and
the specification of dialogue game protocols. In this section, we present the veri-
fication technique, which is based upon (1) the ABTA for ACTL* logic (Section
6.1); and (2) the translation of the property to be verified to an ABTA (Section
6.2) (see Fig. 1). This translation is the step 1 of Fig. 1. The step 2, which is
the construct of the product graph of the model and the ABTA is addressed in

8 Operator G (globally in the future) is an abbreviation defined from operator F :
G� ≡ ¬F¬�



Section 6.3. Finally, the model checking algorithm acting on the product graph
(step 3) is presented in Section 6.4. Examples illustrating each step are also
presented.

6.1 Alternating Büchi Tableau Automata (ABTA) for ACTL*

As a kind of Büchi automata, ABTAs [8] are used in order to prove properties of
infinite behavior. These automata can be used as an intermediate representation
for system properties. Let �p be the set of atomic propositions and let ℜ be a
set of tableau rule labels defined as follows: 9

ℜ = {∧,∨,¬} ∪ ℜAct ∪ ℜ¬Act ∪ ℜSC ∪ ℜSet where: ℜAct = {<Cr >,<Wit >
,< Sat >,< V io >,< Cℎ >,< Ac >,< Ref >,< Jus >,< At >,< Def >},
ℜSC = {[SCAg]}, and ℜSet = {<≡>,X}.
We define ABTAs for ACTL* logic as follows:

Definition 3 (ABTA). An ABTA for ACTL* is a 5-tuple ⟨Q, l,→, q0, F ⟩,
where: Q is a finite set of states; l : Q→ �p∪ℜ is the state labeling; →⊆ Q×Q
is the transition relation; q0 is the start state; F ⊆ 2Q is the acceptance condi-
tion10.

ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed,
an ABTA encodes a proof schema in order to prove, in a goal-directed manner,
that a TS satisfies a temporal formula. Let us consider the following example.
We would like to prove that a state s in a TS satisfies a temporal formula of the
form F1 ∧ F2, where F1 and F2 are two formulae. Regardless of the structure
of the system, there would be two sub-goals. The first would be to prove that
s satisfies F1, and the second would be to prove that s satisfies F2. Intuitively,
an ABTA for F1 ∧ F2 would encode this “proof structure” using states for the
formulae F1 ∧ F2, F1, and F2. A transition from F1 ∧ F2 to each of F1 and F2

should be added to the ABTA and the labeling of the state for F1 ∧ F2 being
“∧” which is the label of a certain rule. Indeed, in an ABTA, we can consider
that: 1) states correspond to “formulae”, 2) the labeling of a state is the “logical
operator” used to construct the formula, and 3) the transition relation represents
a “sub-goal” relationship.

6.2 Translating ACTL* into ABTA (Step 1)

The procedure for translating an ACTL* formula p = E(�) to an ABTA B
uses goal-directed rules in order to build a tableau from this formula. Indeed,
these proof rules are conducted in a top-down fashion in order to determine if
states satisfy properties. The tableau is constructed by exhaustively applying
the tableau rules presented in Table 1 to p. Then, B can be extracted from this

9 The partition of the set of tableau rule labels is only used for readability and orga-
nizational reasons.

10 The notion of acceptance condition is related to the notion of accepting run that we
define in Section 6.3.



tableau as follows. First, we generate the states and the transitions. Intuitively,
states will correspond to state formulae, with the start state being p. To generate
new states from an existing state for a formula p′, we determine which rule is
applicable to p′, starting with R1, by comparing the form of p′ to the formula
appearing in the “goal position” of each rule. Let rule(q) denote the rule applied
at node q. The labeling function l of states is defined as follows. If q does not
have any successor, then l(q) ∈ �p. Otherwise, the successors of q are given by
rule(q). The label of the rule becomes the label of the state q, and the sub-goals
of the rule are then added as states related to q by transitions.

A tableau for a ACTL* formula p is a maximal proof tree having p as its root
and constructed using our tableau rules (see Section 4.3). If p′ results from the
application of a rule to p, then we say that p′ is a child of p in the tableau. The
height of a tableau is defined as the length of the longest sequence <p0, p1, . . .>,
where pi+1 is the child of pi [14].

Example 1. In order to illustrate the translation procedure and the construction
of an ABTA from an ACTL* formula, let us consider our formula Formula 1
given in Section 5. Table 2 is the tableau to build for translating Formula 1 into
an ABTA. The form of Formula 1 is: AG(p ⇒ q)(≡ AG(¬p ∨ q)) (the root of
Table 2). The first rule we can apply is R5 labeled by ¬ in order to transform all
paths to exists a path. We also use the equivalence (F (p) ≡ ¬G(¬p)). We then
obtain the child number (2). The next rule we can apply is R22 labeled by ∨
because F is an abbreviation of U (F (p) ≡ True U p). Consequently, we obtain
two children (3) and (4). From the child (3) we obtain the child (5) by applying
the rule R10, and from the child (4) we obtain the child (2) by applying the rule
R20 etc. The ABTA obtained from this tableau is illustrated by Fig. 3. States
are labeled by the child’s number in the tableau and the label of the applied rule
according to Table 2.

The termination proof of the translation procedure is based on the finiteness
of the tableau. This proof is based on the length of formulae and an ordering
relation between these formulae. The proof is detailed in [4].

6.3 Run of an ABTA on a Transition System (Step 2)

Like the automata-based model checking of LTL, in order to decide about the
satisfaction of formulae, we use the notion of the accepting runs. In our technique,
we need to define accepting runs of an ABTA on a TS. Firstly, we have to define
the notion of ABTA’s run. For this reason, we need to introduce two types of
nodes: positive and negative. Intuitively, nodes classified positive are nodes that
correspond to a formula without negation, and negative nodes are nodes that
correspond to a formula with negation. Definition 4 gives the definition of this
notion of run. In this definition, elements of the set S of states are denoted si
or ti.

Definition 4 (Run of an ABTA). A run of an ABTA B = ⟨Q, l,→, q0, F ⟩

on a transition system T = ⟨S,Lab, ℘, L,Act,
Act
−→, s0⟩ is a graph in which the



Table 2. The tableau of Formula 1

¬ : AG(¬Cℎ(Ag2, SC(Ag1, Ag2, �1)) ∨ F (Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (1)

∨ : EF (Cℎ(Ag2, SC(Ag1, Ag2, �1)) ∧G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (2)

<Cℎ>: E(Cℎ(Ag2, SC(Ag1, Ag2, �1))∧ <X>: EX(F (Cℎ(Ag2, SC(Ag1, Ag2, �1))∧
G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (3) G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2)))) (4)

[SCAg2 ] : E(SC(Ag2, Ag1, ?�1)∧ EF (Cℎ(Ag2, SC(Ag1, Ag2, �1))∧
G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (5) G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (2)

<≡>: E(?�1 ∧G(¬Jus(Ag1, SC(Ag1, Ag2,

�1), �2))) (6)

?�1 (7) ∨ : E(G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (8)

<¬Jus>: E(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2),
XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (9)

[SCAg1 ] : E(SC(Ag1, Ag2, �1 ∴ �2),
XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (10)

∧ : E(�2 ∴ �1, XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (11)

<≡>: E(�2, X(¬�2 ∨ �1), XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (12)

�2 (13) X : E(X(¬�2 ∨ �1), XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (14)

<≡>: E((¬�2 ∨ �1), XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (15)

¬�2 ∨ �1 (16) X : E(XG(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (17)

∨ : E(G(¬Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (8)

nodes are classified as positive or negative and are labeled by elements of Q× S
as follows:

1. The root of the graph is a positive node and is labeled by <q0, s0> .
2. For a positive node ' with label <q, si>:

(a) If l(q) = ¬ and q → q′, then ' has one negative successor labeled <
q′, si> and vice versa.

(b) If l(q) ∈ �p, then ' is a leaf.
(c) If l(q) ∈ {∧, <≡>} and {q′∣q → q′} = {q1, . . . , qm}, then ' has positive

successors '1, . . . , 'm with 'j labeled by <qj, si> (1 ≤ j ≤ m).
(d) If l(q) = ∨, then ' has one positive successor '′ labeled by <q′, si> for

some q′ ∈ {q′∣q → q′}.

(e) If l(q) = X and q → q′ and {s′∣si
∙

−→ s′} = {t1, . . . , tm} where ∙ ∈ Act,
then ' has positive successors '1, . . . , 'm with 'j labeled by < q′, tj >
(1 ≤ j ≤ m).

(f) If l(q) =<∙> where ∙ ∈ Act and q → q′, and si
∙

−→ si+1, then ' has one
positive successor '′ labeled by < q′, si+1,0 > where si+1,0 is the initial
state of the decomposition TS of si+1.

(g) If l(q) =<∙> where ∙ ∈ ¬Act and q → q′, and si
∙
′

−→ si+1 where ∙ ∕= ∙′

and ∙′ ∈ Act, then ' has one positive successor '′ labeled by <q′, si+1>.

3. For a negative node ' labeled by <q, si>:

(a) If l(q) ∈ �p, then ' is a leaf.
(b) If l(q) ∈ {∨, <≡>} and {q′∣q → q′} = {q1, . . . , qm}, then ' has negative

successors '1, . . . , 'm with 'j labeled by <qj, si> (1 ≤ j ≤ m).



Fig. 3. The ABTA of Formula 1

(c) If l(q) = ∧, then ' has one negative successor '′ labeled by <q′, si> for
some q′ ∈ {q′∣q → q′}.

(d) If l(q) = X and q → q′ and {s′∣si
∙

−→ s′} = {t1, . . . , tm} where ∙ ∈ Act,
then ' has negative successors '1, . . . , 'm with 'j labeled by < q′, tj >
(1 ≤ j ≤ m).

(e) If l(q) =<∙> where ∙ ∈ Act and q → q′, and si
∙

−→ si+1, then ' has one
negative successor '′ labeled by < q′, si+1,0 > where si+1,0 is the initial
state of the decomposition TS of si+1.



(f) If l(q) =<∙> where ∙ ∈ ¬Act and q → q′, and si
∙
′

−→ si+1 where ∙ ∕= ∙′

and ∙′ ∈ Act, then ' has one negative successor '′ labeled by <q′, si+1>.
4. Otherwise, for a positive (negative) node ' labeled by <q, si,j>:

(a) If l(q) =<≡> and {q′∣q → q′} = {q1, q2} such that q1 is a leaf, and
si,j has a successor si,j+1, then ' has one positive leaf successor '′

labeled by < q1, si,j > and one positive (negative) successor '′′ labeled
by <q2, si,j+1>.

(b) If l(q) =<≡> and {q′∣q → q′} = {q1, q2} such that q1 is a leaf, and si,j
has no successor, then ' has one positive leaf successor '′ labeled by
<q1, si,j> and one positive (negative) successor '′′ labeled by <q2, si>.

(c) If l(q) ∈ {∧,∨, X, [SCAg]} and {q′∣q → q′} = {q1}, and si,j
r

−→ si,j+1

such that r = l(q), then ' has one positive (negative) successor '′ labeled
by <q1, si,j+1>.

The notion of run of an ABTA on a TS is a non-synchronized product graph
of the ABTA and TS (see Fig. 1). This run uses the label of nodes in the ABTA

(l(q)), transitions in the ABTA (q → q′), and transitions in the TS (si
∙

−→ sj).
The product is not synchronized in the sense that it is possible to use transitions
in the ABTA while staying in the same state in the TS (this is the case for
example of clauses 2.a, 2.c, and 2.d).

The clause 2.a in the definition says that if we have a positive node ' in the
product graph such that the corresponding state in the ABTA is labeled with ¬
and we have a transition q → q′ in this ABTA, then ' has one negative successor
labeled with <q′, si>. In this case we use a transition from the ABTA and we
stay in the same state of the TS. In the case of a positive node and if the current
state of the ABTA is labeled with ∧, all the transitions of this current state of
the ABTA are used (clause 2.c). However, if the current state of the ABTA is
labeled with ∨, only one arbitrary transition from the ABTA is used (clause 2.d).
The intuitive idea is that in the case of ∧, all the sub-formulae must be true in
order to decide about the formula of the current node of the ABTA. However,
in the case of ∨ only one sub-formula must be true.

The cases in which a transition of the TS is used are:

1. The current node of the ABTA is labeled with X (which means a next state
in the TS). This is the case of clauses 2.e and 3.d. In this case we use all the
transitions from the current state si to next states of the TS.

2. The current state of the ABTA and a transition from the current state of the
TS are labeled with the same action. This is the case of clauses 2.f and 3.e.
In this case, the current transition of the ABTA and the transition from the
current state si of the TS to a state si+1,0 of the associated decomposition
TS are used. The idea is to start the parsing of the formula coded in the
decomposition TS.

3. The current state of the ABTA and a transition from the current state of
the TS are labeled with different actions where the state of the ABTA is
labeled with a negative formula. This is the case of clauses 2.g and 3.f . In
this case, the formula is satisfied. Consequently, the current transition of



the ABTA and the transition from the current state si of the TS to a next
state si+1 are used. Finally, clauses 4.a, 4.b, and 4.c deal with the case of
verifying the structure of the commitment formulae in the sub-TS. In these
clauses, transitions si,j

r
−→ si,j+1 are used. We note here that when si,j has

no successor, the formula contained in this state is an atomic formula or a
boolean formula whose all the sub-formulae are atomic (for example p ∧ q
where p and q are atomic).

Example 2. Fig. 4 illustrates an example of the run of an ABTA. This figure
illustrates a part of the automaton B⊗ resulting from the product of the TS of
Fig. 2 and the ABTA of Fig. 3. According to the clause 1 (Definition 4), the root
is a positive node and it is labeled by <¬, s0> because the label of the ABTA’s
root is ¬ (Fig. 3). Consequently, according to the clause 2.a, the successor is a
negative node and it is labeled by < ∨, s0 >. According to the clause 3.b, the
second node has two negative successors labeled by <<Cℎ>, s0> and < X, s0 >
etc.

Fig. 4. An example of an ABTA’s run



In an ABTA, every infinite path has a suffix that contains either positive or
negative nodes, but not both. Such a path is referred to as positive in the former
case and negative in the latter. Now we can define the notion of accepting runs
(or successful runs). Let p ∈ �p and let si be a state in a TS T . Then si ∣=T p iff
p ∈ Lab(si) and si ∣=T ¬p iff p /∈ Lab(si). Let si,j be a state in a decomposition
TS of a TS T . Then si,j ∣=T p iff p ∈ Lab′(si,j) and si,j ∣=T ¬p iff p /∈ Lab′(si,j).

Definition 5 (Successful Run). Let r be a run of an ABTA B = ⟨Q, l,→

, q0, F ⟩ on a TS T = ⟨S,Lab, ℘, L,Act,
Act
−→, s0⟩. The run r is successful iff every

leaf and every infinite path in r is successful. A successful leaf is defined as
follows:

1. A positive leaf labeled by <q, si> is successful iff si ∣=T l(q) or l(q) =<∙>

where ∙ ∈ Act and there is no sj such that si
∙

−→ sj.
2. A positive leaf labeled by <q, si,j> is successful iff si,j ∣=T l(q)
3. A negative leaf labeled by <q, si> is successful iff si ∣=T ¬l(q) or l(q) =<∙>

where ∙ ∈ Act and there is no sj such that si
∙

−→ sj.
4. A negative leaf labeled by <q, si,j> is successful iff si,j ∣=T ¬l(q)

A successful infinite path is defined as follows:

1. A positive path is successful iff ∀f ∈ F, ∃q ∈ f such that q occurs infinitely
often in the path. This condition is called the Büchi condition.

2. A negative path is successful iff ∃f ∈ F, ∀q ∈ f, q does not occur infinitely
often in the path. This condition is called the co-Büchi condition.

We note here that a positive or negative leaf labeled by <q, s> such that
l(q) =< ∙> where ∙ ∈ Act and there is no s′ such that s

∙
−→ s′ is considered

a successful leaf. The reason is that it is possible to find a transition labeled by
∙ and starting from another state s′′ in the TS. In fact, if we consider such a
leaf unsuccessful, then even if we find a successful infinite path, the run will be
considered unsuccessful, which is false.

An ABTA B accepts a TS T iff there exists a successful run of B on T . In
order to compute the successful run of the generating ABTA, we should compute
the acceptance states F . For this purpose we use the following definition.

Definition 6 (Acceptance States). Let q be a state in an ABTA B and Q
the set of all states. Suppose � = �1U�2 ∈ q 11. We define the set F� as follows:
F� = {q′ ∈ Q∣(� /∈ q′ and X� /∈ q′) or �2 ∈ q′}. The acceptance set F is defined
as follows: F = {F�∣� = �1U�2 and ∃q ∈ B, � ∈ q}.

According to this definition, a state that contains the formula � or the formula
X� is not an acceptance state. The reason is that according to Definition 4, there
is a transition from a state containing � to a state containing X� and vice versa.
Therefore, according to Definition 5, there is a successful run in the ABTA B.

11 Here we consider until formula because it is the formula that allows paths to be
infinite.



However, we can not decide about the satisfaction of a formula using this run.
The reason is that in an infinite cycle including a state containing � and a
state containing X�, we can not be sure that a state containing �2 is reachable.
However, according to the semantics of U , the satisfaction of � needs that a state
containing �2 is reachable while passing by states containing �1.

Example 3. In order to compute the acceptance states of the ABTA of Fig. 3,
we use the formula associated with the child number (2) in Table 2:

F (Cℎ(Ag2, SC(Ag1, Ag2, �1)) ∧G(¬Jus(Ag1, SC(Ag1, Ag2, �1)�2)))

We consider this formula, denoted �, instead of the root’s formula because its
form is E(�) (see Section 6.2). Consequently, state (1) and states from (3) to
(17) are the acceptance states according to Definition 6. For example, state (1)
is an acceptance state because � and X� are not in this state, and state (3) is an
acceptance state because �2 is in this state. States (2) and (4) are not acceptance
states. Because only the first state is labeled by ¬, all finite and infinite paths
are negative paths. Consequently, the only infinite path that is a valid proof of
Formula 1 is (1, (2, 4)*). In this path there is no acceptance state that occurs
infinitely often. Therefore, this path satisfies the Büchi condition. The path vis-
iting the state (3) and infinitely often the state (9) does not satisfy Formula
1 because there is a challenge action (state (3)), and globally no justification
action of the content of the challenged commitment (state (9)).

6.4 Model Checking Algorithm (Step 3)

Our model checking algorithm (see Fig. 5) for verifying that a dialogue game
protocol satisfies a given property and that it respects the decomposition seman-
tics of the underlying communicative acts is inspired by the procedure proposed
by [8]. Like the algorithm proposed by [19], our algorithm explores the product
graph of an ABTA representing an ACLT* formula and a TS for a dialogue
game protocol. This algorithm is on-the-fly (or local) algorithm that consists of
checking if a TS is accepted by an ABTA. This ABTA-based model checking is
reduced to the emptiness of the Büchi automata [46]. The emptiness problem
of automata is to decide, given an automaton A, whether its language L(A) is
empty. The language L(A) is the set of words accepted by A.

Let T = ⟨S,Lab, ℘, L,Act,
Act
−→, s0⟩ be a TS for a dialogue game and let

B = ⟨Q, l,→, q0, F ⟩ be an ABTA for ACTL*. The procedure consists of building
the ABTA product B⊗ of T and B while checking if there is a successful run in
B⊗. The existence of such a run means that the language of B⊗ is non-empty.
The automaton B⊗ is defined as follows: B⊗ = ⟨Q×S,→B⊗

, q0B⊗
, FB⊗

⟩. There
is a transition between two nodes <q, s> and <q′, s′> iff there is a transition
between these two nodes in some run of B on T . Intuitively, B⊗ simulates all
the runs of the ABTA. The set of accepting states FB⊗

is defined as follows:
q0B⊗

∈ FB⊗
iff q ∈ F .



Unlike the algorithms proposed in [8, 19], our algorithm uses only one depth-
first search (DFS) instead of two. This is due to the fact that our algorithm
explores directly the product graph using the sign of the nodes (positive or nega-
tive). In addition, our algorithm does not distinguish between recursive and non-
recursive nodes. Therefore, we do not take into account the strongly-connected
components in the ABTA, but we use a marking algorithm that directly works
on the product graph.

The idea of this algorithm is to construct the product graph while exploring
it. The construction procedure is directly obtained from Definition 4. The algo-
rithm uses the label of nodes in the ABTA, and the transitions in the product
graph obtained from the TS and the ABTA as explained in Definition 4. In or-
der to decide if the ABTA contains an infinite successful run, all the explored
nodes are marked “visited”. Thus, when the algorithm explores a visited node,
it returns false if the infinite path is not successful. If the node is not already
visited, the algorithm tests if it is a leaf. In this case, it returns false if the node
is a non-successful leaf. If the explored node is not a leaf, the algorithm explores
recursively the successors of this node. If this node is labeled by “∧”, and signed
positively, then it returns false if one of the successors is false. However, if the
node is signed negatively, it returns false if all the successors are false. A dual
treatment is applied when the node is labeled by “ ∨ ”.

Example 4. In order to check if the language of the automaton illustrated by
Fig. 4 is empty, we check if there is a successful run. The idea is to verify if B⊗

contains an infinite path visiting the state (3) and infinitely often the state (9)
of the ABTA of Fig. 3. If such a path exists, then we conclude that Formula
1 is not satisfied by the TS of Fig. 2. Indeed, the only infinite path of B⊗ is
successful because it does not touch any accepted state and all leaves are also
successful. For instance, the leaf labeled by (<Cℎ>, s0) is successful since there

is no state si such that s0
Cℎ
−→ si. Therefore, the TS of Fig. 2 is accepted by the

ABTA of Formula 1. Consequently, this TS satisfies Formula 1 and respects its
decomposition semantics.

Soundness and completeness of our model checking method are stated by the
following theorem.

Theorem 1 (Soundness and Completeness). Let  be a ACTL* formula
and B the ABTA obtained by the translation procedure described above, and let

T = ⟨S,Lab, ℘, L,Act,
Act
−→, s0⟩ be a TS that represents a dialogue game protocol.

Then, s0 ∣=T  iff T is accepted by B .

Proof. (Direction ⇒). To prove that T is accepted by B , we have to prove
that there exists a run r of B on T such that all leaves and all infinite paths
in the run are successful. Let us assume that s0 ∣=T  . First, let us suppose
that there exists a leaf <q, s> in r such that s ∣=T ¬l(q). Since the application
of tableau rules does not change the satisfaction of formulae, it follows from
Definition 4 that s0 ∣=T ¬ which contradicts our assumption.
Now, we will prove that all infinite paths are successful. The proof proceeds by



DFS(v = (q, s)): boolean {

if v marked visited {

if (sign(v) =  "+" and not accepting(v)) or (sign(v) = "-" and accepting(v)) 

return false

} // end of if v marked visited

else {

mark v visited

switch(l(q)) {

case (p  p): 

switch(sign(v)) {

case("+"): if s is a sub-state and l(q) L’(s) return false

case("-"): if s is a sub-state and l(q)) L’(s) return false

case("neutral"): return false

} // end of switch(sign(v))

case( ):

if s is a leaf return false

else

switch(sign(v)) {

case(neutral): for all v’’  {v’ / v B  v’} 

 if not DFS(v’’) return false

case("+"): for all v’’  {v’ / v B  v’} 

              if not DFS(v’’) return false

case("-"): for all v’’  {v’ / v B  v’} 

             if DFS(v’’) return true else return false

} // end of switch(sign (v))

case( ):

if s is a leaf return false

else

switch(sign(v)) {

case(neutral): for all v’’ {v’ / v B  v’} 

     if DFS(v’’) return true else return false

case("+"): for all v’’  {v’ / v B  v’} 

              if DFS(v’’) return true else return false

case("-"): for all v’’  {v’ / v B  v’} 

             if not DFS(v’’) return false

} // end of switch(sign (v))

case(< >):

if s is a leaf return true

else for the v’’  {v’ / v B  v’} if not DFS(v’’) return false

case(X, SCAg, < >, ?):

if s is a leaf return false

else for the v’’  {v’ / v B  v’} if not DFS(v’’) return false

} // end of switch(l(q))

} // end of else

return true }

Fig. 5. The model checking algorithm



contradiction.  is a state formula that we can write under the form E�, where
� is a set of path formulae. Let us assume that there exists an unsuccessful
infinite path xr in r and prove that xT ∣=T ¬� where xT is the path in T
that corresponds to xr (xr is the product of B and T ). The fact that xr is
infinite implies that R22 occurs at infinitely many positions in xr. Because xr
is unsuccessful, ∃�1, �2, qi such that �1U�2 ∈ qi and ∀j ≥ i we have �2 /∈ qj .
When this formula appears in the ABTA at the position qi, we have l(qi) = ∨.
Thus, according to Definition 4 and the form of R22, the current node '1 of r
labeled by <qi, s> has one successor '1 labeled by <qi+1, s> with �1U�2 ∈ qi
and {�1, X(�1U�2)} ⊆ qi+1. Therefore, l(qi+1) = ∧, and '2 has a successor
'3 labeled by < qi+2, s > with X(�1U�2) ∈ qi+2. Using R20 and the fact that
l(qi+2) = X , the successor '4 of '3 is labeled by <qi+3, s

′> with �1U�2 ∈ qi+3

and s′ is a successor of s. This process will be repeated infinitely since the path
is unsuccessful. It follows that there is no s in T such that s ∣=T �2. Thus,
according to the semantics of U , there is no s in T such that s ∣=T �1U�2.
Therefore, xT ∣=T ¬�.
(Direction ⇐). The proof proceeds by an inductive construction of xr and
an analysis of the different tableau rules. A detailed proof of this theorem is
presented in [4].

7 Case Studies

In this section, we will exemplify the model checking technique presented in this
chapter by means of two case studies: 1) the persuasion/negotiation protocol for
agent-based web services (PNAWS) [5]; and 2) the NetBill protocol, a system
of micropayments for goods on the Internet [43]. We will also discuss their imple-
mentations using an extension of the Concurrency Workbench of New Century
(CWB-NC) model checker12 [15, 49], which has been used to check many large-
scale protocols in communication networking and process control systems. As
benchmark, we will show the simulation results of these two case studies using
the MCMAS model checker [38].

7.1 Verifying 퓟퓝퓐퓦퓢

PNAWS is a dialogue game-based protocol allowing web services to interact in
a negotiation setting via argumentative agents. Agents can negotiate their par-
ticipation in composite web services and persuade each other to perform some
actions such as joining some existing business communities. In this case, two
agents are used: the Master agent that manages the community and the Slave
agent that is invited to join the community. PNAWS is specified using two
special moves: refusal and acceptance as well as five dialogue games: entry game
(to open the interaction), defense game, challenge game, justification game, and

12 The CWB-NC model checker can be downloaded from:
http://www.cs.sunysb.edu/ cwb/



attack game. The PNAWS protocol can be defined as follows using a BNF-like
grammar where “∣” is the choice symbol and “;” the sequence symbol:

PNAWS = entry game; defense game; WSDG
WSDG = acceptance move ∣ CH ∣ ATT
CH = challenge game; justification game; (WSDG ∣ refusal move)
ATT = attack game; (WSDG ∣ refusal move)

Each game is specified by a set of moves using a set of logical rules. Fig. 6
illustrates the different actions of this protocol using a finite state machine.
Many properties can be checked in this protocol, such as deadlock freedom (a
safety property), and liveness (something good will eventually happen). Dead-
lock freedom means that there is always a possibility for an action and can be
expressed as follows, where Ag ∈ {Ag1, Ag2}:

AG(Cr(Ag1, SC(Ag1, Ag2, �)) ⇒ AF (Action(Ag, SC(Ag1, Ag2, �))

∨Action+(Ag, SC(Ag1, Ag2, �), �1))) (2)

An example of liveness can be expressed by the following formula stating that if
there is a challenge, a justification will eventually follow:

AG(Cℎ(Ag2, SC(Ag1, Ag2, �1)) ⇒ F (Jus(Ag1, SC(Ag1, Ag2, �1), �2))) (3)
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Fig. 6. Actions of the PNAWS protocol

We have extended the CWB-NC model checker by adding SC and argument
operators and implemented this case study. CWB-NC supports GCTL*, which



is close to our logic (without SC and argument operators) and allows modeling
concurrent systems using Calculus of Communicating Systems (CCS) developed
in [33]. CCS is a process algebra language, which is a prototype specification
language for reactive systems. CCS can be used not only to describe imple-
mentations of processes, but also specifications of their expected behaviors. To
implement this case study, CCS is used to describe the model M to be checked
by specifying the states and labeled transitions. ACTL* is used to specify the
properties and the extended CWB-NC tool takes as input the CCS code and
the ACTL* property and automatically builds the dialogue game protocol and
checks the property by building the ABTA and executing the model checking
algorithm presented in Fig. 5 (see the methodology in Fig. 1). To use CCS as the
design language to describe the PNAWS protocol, we need first to introduce
its syntax. Let A be the set of actions performed on SC we consider in ACTL*
logic. For all a ∈ A, we associate a complementary action ′a. An action a repre-
sents the receipt of an input action, while ′a represents the deposit of an output
action. The syntax is given by the following BNF grammar:

P ::= nil∣�(�).P ∣(P + P )∣(P ∣P )∣proc C = P

“.” represents the prefixing operator, “+” is the choice operator, “∣” is the par-
allel operator and “proc =” is used for defining processes. The semantics can
be defined using operational semantics in the usual way. �(�).P is the processes
of performing the action � on the SC content � and then evolves into process
P . For representation reasons, we consider only the commitment content and
we omit the other arguments. In addition, we abstract away from the inter-
nal states and we focus only on the global states. P + Q is the process which
non-deterministically makes the choice of evolving into either P or Q. P ∣Q is the
process which evolves in parallel into P and Q. To implement PNAWS, we need
to model the protocol and the agents using this protocol (the Master and Slave
agents). For this reason, four particular processes should be defined: the states
process describing the protocol dynamics; the two agents processes describing
the agents legal decisions; and the communication synchronization process. The
formulae to be checked are then encoded in CWB-NC input language. A simpli-
fied version of the states process is as follows:

proc Spec = create(�).S1
proc Accept = accept(�).Spec
proc Accept’ = ’accept(�).Spec
proc Refuse = refuse(�).Spec
proc Refuse’ = ’refuse(�).Spec
proc S1 = ’refuse(�).S2 + Accept’

proc S2 = defend(�′).S3
proc S3 = ’challenge(�′).S4 + ’attack(�′).S6 + ’accept(�′).Spec
proc S4 = justify(�).S5
proc S5 = ’challenge(�).S4 + ’Accept +’Refuse



proc S6 = attack(�’).S7 + Accept +Refuse

proc S7 = ’attack(�).S6 + ’accept(�′).Spec + ’refuse(�′).Spec
set Internals = {create, challenge, justify, accept,

refuse, attack, defend}

The Master agent process has the form:

proc Master = create(�).’accept(�).master
+ create(�).’refuse(�).defend(�).’accept(�).master
+ create(�).’refuse(�).defend(�).’refuse(�).master
...

The Slave agent process has a similar form except the fact that it does not
initiate the communication. The process describing the communication synchro-
nization activity of an agent is as follows:

proc Ag = ’create(�).Ag +

create(�).(’refuse(� ).Ag + ’accept(� ).Ag) +

refuse(�).(Ag + ’defend( �’).Ag) +

defend(�’).(’challenge(�′).Ag + ’attack(�).Ag + ’accept(�’).Ag) +

challenge(�).’justify(�′).Ag +

justify(�’).(’challenge(�′).Ag + ’accept(�′).Ag +’refuse(�′).Ag) +
attack(�’).(’attack(�).Ag + ’accept(�′).Ag+’refuse(�′).Ag) +

accept(�).Ag

The model size is ∣M ∣ = ∣S∣+ ∣R∣, where ∣S∣ is the state space and ∣R∣ is the
relation space. ∣S∣ = ∣SAg1 ∣ × ∣SAg2 ∣ × ∣SPNAWS ∣, where ∣SAgi ∣ is the number of
states for Agi and ∣SPNAWS ∣ is the number of states of the protocol. An agent
state is described in terms of the possible actions and each action is described by
a set of states. For example, create action needs 2 states, challenge needs 3 states,
and justify needs 5 states (see Fig. 2). Thus, for each agent we have 35 states.
The protocol is described by the legal actions (Fig. 6), so it needs 29 states. In
total, the number of states needed for this case study is ∣S∣ = 35525 ≈ 3.5 ⋅ 104.
To calculate ∣R∣, we have to consider the operators of ACTL* and the actions,
where the total number is 6+11 = 17. We can then approximate ∣R∣ by 17 ⋅ ∣S∣2.
So we have ∣M ∣ ≈ 17 ⋅ ∣S∣2 ≈ 2 ⋅ 1010. This is a theoretically estimated size if
all possible transitions are considered. However, in the implementation, not all
these transitions are used. On the other hand, the system considers additional
states for the internal coding of variable states and actions. Some simulation
results on a laptop Intel Core 2 Duo CPU T6400 2.20 GHz with 3.00 GB of
RAM running Windows Vista Home Premium are given in Table 3. Fig. 7 shows
the results screenshot. In fact, CWB-NC does not search the whole model, but
it proceeds by simplifying the ABTA, minimizing the sets of accepting states,
and computing bisimulation before starting the model checking.



Table 3. Statistics of verifying PNAWS using CWB-NC

Model size (states/transitions) 35709/77244

Time for building the model (sec) 1.763

Verification time (sec) 5.912

Total execution time (sec) 7.675

Fig. 7. PNAWS simulation results with CWB-NC

As benchmark, we use MCMAS [38] that supports agent specifications. As
discussed in Section 2.2, MCMAS is a symbolic model checker based on OBDDS,
where the model and formula to be checked are not represented as automata,
but using boolean functions. in MCMAS, models are described into a modular
language called Interpreted Systems Programming Language (ISPL). An ISPL
program includes: 1) a list of agents’ descriptions; 2) an evaluation function
indicating the states where atomic propositions are true; 3) a set of initial states;
and 4) a list of formulae. Each agent is composed by: a set of local states, a set
of actions, a rule (protocol) describing which action can be performed by the
agent, and evolution functions that describe how the local states of the agent
evolve based on the current local states and agent’s actions.

To implement the PNAWS protocol with ISPL, commitments are encoded
as variables. The Master and Slave agents are specified in two Agent sections
along with the Protocol and its Evolution. The atomic propositions are evalu-
ated in Evaluation section. Formulae are then encoded in the same file in the



Formulae section. As example, we show here the form of the Master agent:

Agent Master

Vars:

state : {M0, M1, M2, ...};
. . .

end Vars

Actions = {create, defend, ...};
Protocol:

-- initiate the contract by creating

state = M0 : {create};
. . .

end Protocol

Evolution:

state = M1 if state = M0 and Slave.Action = reject

. . .
end Evolution

end Agent

Some simulation results using the same machine as for CWB-NC are given in Ta-
ble 4. Fig. 8 shows the results screenshot. This simulation reveals that MCMAS
uses greater number of reachable states, which are needed to encode commit-
ments and agent local states. The execution time is very close to the previous
experiment.

Table 4. Statistics of verifying PNAWS using MCMAS

Number of reachable states 39475

Number of BDD and ADD nodes 152093

Total execution time (sec) 8

7.2 Verifying NetBill

We consider a modified version of the NetBill protocol where two agents, Cus-
tomer (Cus) and Merchant (Mer), are interacting about some goods. The pro-
tocol starts when the Customer requests a quote, which means creating a com-
mitment about a content �1. The merchant can then either reject the request,
which means refuse the commitment and the protocol will end, or accept the
request (i.e. accept the commitment) and then make an offer (i.e. create another
commitment about a content �2). The protocol is self-described in Fig.9. An
example of liveness in this protocol can be expressed by the following formula
stating that if a commitment is created, then there is a possibility of satisfying
it.

AG(Cr(Ag1, SC(Ag1, Ag2, �1)) ⇒ EF (Sat(Ag1, SC(Ag1, Ag2, �1))) (4)



Fig. 8. PNAWS simulation results with MCMAS

NetBill size is ∣M ∣ = (∣SAg1 ∣ × ∣SAg2 ∣ × ∣SNetBill∣) + ∣R∣, where Ag1 is the
Customer and Ag2 is the Merchant. According to the actions the Customer and
Merchant are allowed to perform, we have ∣SAg1 ∣ = 9 and ∣SAg2 ∣ = 13. The
NetBill protocol is described by the legal actions, and by considering the size
of each action, we obtain ∣SNetBill∣ = 22. In total, the number of states needed
for this case study is ∣S∣ = 2574 ≈ 2.5 ⋅ 103. As we did in the previous case
study, the theoretical estimation of ∣R∣ if all possible transitions are considered
is ∣R∣ ≈ 17 ⋅ ∣S∣2. So we have ∣M ∣ ≈ 1010. As illustrated in Table 5, which shows
the NetBill simulation results with CWB-NC using the same machine as in the
previous case study, the number of transitions that are effectively considered is
much more smaller. Table 6 shows the simulation results with MCMAS. Fig. 10
shows the results screenshot with the two model checkers. Because NetBill is 14
times smaller than PNAWS, its execution time is shorter.

Table 5. Statistics of verifying NetBill using CWB-NC

Model size (states/transitions) 2593/5911

Time for building the model (sec) 0.125

Verification time (sec) 0.359

Total execution time (sec) 0.484
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Fig. 9. Actions of the NetBill protocol

Table 6. Statistics of verifying NetBill using MCMAS

Number of reachable states 2851

Number of BDD and ADD nodes 9332

Total execution time (sec) ≈ 0.5

8 Discussion and Future Work

Model checking is an effective technique to verify finite state systems. Com-
pared to classical software systems, model checking multi-agent systems raise
new challenges related to the need of considering: 1) epistemic properties where
the semantics is expressed in terms of accessibility relations; and 2) agent commu-
nication protocols that integrate agent properties and message meaning, which
make them more complex than simple message exchanging mechanisms. These
two fundamental issues need new and efficient verification techniques considering
computational interpretations of accessibility relations and message meaning.

In this chapter we described a verification technique for dialogue game proto-
cols. The proposed model checking algorithm allows us to verify both protocols’
correctness and agents’ compliance to the decomposition semantics of commu-
nicative acts. This technique uses a combination of automata and tableau-based
algorithms to verify temporal and action specifications. The formal properties to
be verified are expressed in ACTL* logic and translated to ABTA using tableau
rules. Our model checking algorithm that works on a product graph is an efficient
on-the-fly procedure.



Fig. 10. Simulation results of NetBill



The field of automatic verification of multi-agent systems has manifested sig-
nificant advances in the past few years, as efficient algorithms and techniques
have been proposed. However, many issues still need investigations. The most
challenging among them are: 1) verifying the compliance of agents’ joint actions
to the norms and rules of the multi-agent system in which they operate; 2) in-
tegrating the verification of mental and social attitudes in the same framework;
3) allowing the use of expressive logical languages to specify agents and their
communication and coordination, multi-agent environments, and requirements
(i.e. desired properties); and 4) developing tools integrating the whole aforemen-
tioned issues.

We plan to extend this work to address some of these issues. In fact, we
intend to use the proposed tableau-based technique to verify MAS specifications
and the conformance of agents to these specifications. We also plan to extend
the technique and logic in order to consider epistemic properties, so that we
will have a same framework for private and social attitudes. We plan to use
this technique to specify and verify the compliance of agents’ actions to the
norms and policies of multi-agent systems. Although the technique discussed in
this chapter is computationally efficient, it has the problem of state explosion.
For this reason, we plan to consider symbolic and bounded model checking to
verify agent commitments and their dialogue games. We are investigating the
extension of the MCMAS model checker to integrate LTL logic with commitment
modalities and action formulae, so it will be possible to symbolically model check
dialogue games with ACTL* logic.
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2007- 111881) for their financial support.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P.:
Compliance verification of agent interaction: a logic-based tool. Proc. of the European
Meeting on Cybernetics and Systems Research, Vol. II (2004) 570–575.

2. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C.: Verifying
protocol conformance for logic-based communicating agents. Computational Logic in
Multi-Agent Systems, LNAI 3487 (2004) 196–212.

3. Benerecetti, M. and Cimatti, A.: Symbolic model checking for multi-agent systems.
Proc. of the International Workshop on Model Checking and AI (2002) 1–8.

4. Bentahar, J.: A pragmatic and semantic unified framework for agent communication.
Ph.D. Thesis, Laval University, Canada May (2005).



5. Bentahar, J., Maamar, Z., Benslimane, D. and Thiran, P.: An argumentation frame-
work for communities of web services, IEEE Intelligent Systems 22 (6) (2007) 75–83.

6. Bentahar, J., Moulin, B., and Chaib-draa, B.: A persuasion dialogue game based on
commitments and arguments. Proc. of the International Workshop on Argumentation
in Multi-Agent Systems (2004) 148–164.

7. Bentahar, J., Moulin, B., Meyer, J-J, Ch., and Chaib-draa, B.: A logical model for
commitment and argument network for agent communication. Proc. of the Interna-
tional Joint Conference on AAMAS (2004) 792–799.

8. Bhat, G., Cleaveland, R., and Groce, A.: Efficient model checking via Büchi tableau
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